THE ROBUST ALTERNATIVE TO STANDARD VALIDITY APPROACH

Authors

  • Ksenija Bosnar University of Zagreb Faculty of Kinesiology
  • Franjo Prot University of Zagreb Faculty of Kinesiology

Abstract

The usual approach to criterion-related validity is developed under the canonical correlation model and is based on the maximization of the correlation of test results and the chosen criteria. The standard measures of validity are canonical correlation in the case of several test results and criteria, multiple correlation in the case of several test results and one criterion, and bivariate correlation in the case of one test and one criterion. In kinesiology, as well as some other disciplines, standard measures of validity are not always appropriate, being sensitive of the value of degrees of freedom. Therefore, the measures of validity based on the maximization of covariance of test results and chosen criteria proposed by Momirović et al. (1983), including robust canonical correlation analysis, robust regression analysis, robust discriminant analysis and redundancy analysis, may be more appropriate. The example in favour of this method of validation is presented.

References

Bosnar, K., Prot, F., & Momirović, K. (1984). Neke relacije između kanoničke i kvazikanoničke korelacijske analize. In: K. Momirović, J. Štalec, F. Prot, K. Bosnar, N. Viskić-Štalec, L. Pavičić, & V. Dobrić, (1984): Kompjuterski programi za klasifikaciju, selekciju, programiranje i kontrolu treninga. Fakultet za fizičku kulturu, Zagreb, 5–22.

Cohen, J., & Cohen, P. (1983, 2003). Appendix 4. Set correlation as a General Multivariate Data-analytic Method. Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences (2nd edition). Hillsdale, New Jersey: Lawrence Erlbaum Associates, 487–518.

Gliner, J.A., & Morgan, G.A. (2000). Research Methods in Applied Settings: An Integrated Approach to Design and Analysis. Mahawah: Lawrence Erlbaum Associates.

Hotelling, H. (1936). Relations between two sets of variantes. Biometrika, 28, 321–377.

Hošek, A., Bosnar, K., & Prot, F. (1984). Comparison of the results of quasicanonical and canonical correlation analysis in various experimental situations. In: V. Lužar & M. Cvitaš (Eds.): Proceedings of International Symposium 'Computer at the University'. Zagreb: University Computing Centre, 610.1–610.7.

Knežević, G., & Momirović, K. (1996). Algorithm and program for analysis of relations between canonical correlation analysis and covariance canonical analysis. [Algoritam i program za analizu relacija kanoničke korelacijske analize i kanoničke analize kovarijansi in Serbian] In: P. Kostić (ed.) Merenje u psihologiji, 2, 57–73. Beograd: Institut za kriminološka i sociološka istraživanja.

Lanc, M. (1967). Neke relacije između testova kognitivnih funkcija i taktičkih sposobnosti u sportskim igrama (magistarski rad), Zagreb: Visoka škola za fizičku kulturu.

Mekota, K., & Blahuš, P. (1983). Motoricke testy v telesne vychove. Praha: Statni pedagogicke nakladatelstvo.

Momirović, K., Dobrić, V., & Karaman, Ž. (1983). Canonical covariance analysis. In: Proceedings of 5th International Symposium 'Computer at the University', Cavtat, 463–473.

Reuchlin, M., & Valin, E. (1953). Tests collectifs du Centre de Recherche BCR. Bulletin de l'Institut National d'Orientation Professionelle, 9, 1–152.

Štalec, J., & Momirović, K. (1983). Some properties of a very simple model for robust regression analysis. Proceedings of International Symposium "Computer at the University", 453–461.

Tucker, L.R (1958). An Inter-Battery Method of Factor Analysis, Psychometrika, 23,2: 111–136.

Downloads

Published

24-12-2010

How to Cite

Bosnar, K., & Prot, F. (2010). THE ROBUST ALTERNATIVE TO STANDARD VALIDITY APPROACH. Annales Kinesiologiae, 1(2). Retrieved from https://ojs.zrs-kp.si/index.php/AK/article/view/71

Issue

Section

Articles