Physical activity regulates the intestinal microbiota composition
DOI:
https://doi.org/10.35469/ak.2019.185Keywords:
gut microbiota, physical exercise, healthAbstract
Gut microbiota is the name given today to the bacterial population living in our intestine. It provides nutrients, metabolites and affects the immune system. Recent animals and human studies suggest that regular physical activity increases the presence of beneficial microbial species of gut microbiota and improves the health status of the host. When gut bacteria diversity reduces, there are systemic consequences leading to gastrointestinal, physiological and psychological distress. This review describes the communication pathway of the microbiota-gut-brain axes and other possible mechanisms by which physical activity causes changes in microbiota composition. Furthermore, it provides the latest evidence of the beneficial role of exercise, which in turn can affect health and various disease processes. The results of research studies in this area are increasingly becoming a focus of scientific attention.
References
Aagaard, K., Ma, J., Antony, K. M., Ganu, R., Petrosino, J., & Versalovic, J. (2014). The placenta harbors a unique microbiome. Science Translational Medicine, 6(237), 237ra65. https://doi.org/10.1126/scitranslmed.3008599
Akira, S., & Hemmi, H. (2003). Recognition of pathogen-associated molecular patterns by TLR family. Immunology Letters, 85(2), 85–95. https://doi.org/10.1016/S0165-2478(02)00228-6
Arora, T., & Bäckhed, F. (2016). The gut microbiota and metabolic disease: current understanding and future perspectives. Journal of Internal Medicine, 280(4), 339-349. https://doi.org/10.1111/joim.12508
Allen, J. M., Mailing, L. J., Cohrs, J., Salmonson, C., Fryer, J. D., Nehra, V., ... Woods, J. A. (2018). Exercise training-induced modification of the gut microbiota persists after microbiota colonization and attenuates the response to chemically-induced colitis in gnotobiotic mice. Gut Microbes, 9(2), 115–130. https://doi.org/10.1080/19490976.2017.1372077
Bäckhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A., & Gordon, J. I. (2005). Host-bacterial mutualism in the human intestine. Science, 307(5717), 1915–1920. https://doi.org/10.1126/science.1104816
Bercik, P., Park, A. J., Sinclair, D., Khoshdel, A., Lu, J., Huang, X., … Verdu, E. F. (2011). The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterology and motility: the official journal of the European Gastrointestinal Motility Society, 23(12), 1132–1139. https://doi.org/10.1111/j.1365-2982.2011.01796.x
Bhagavata Srinivasan, S. P., Raipuria, M., Bahari, H., Kaakoush, N. O., & Morris, M. J. (2018). Impacts of diet and exercise on maternal gut microbiota are transferred to offspring. Frontiers in Endocrinology, 9, 716. https://doi.org/10.3389/fendo.2018.00716
Bokulich, N. A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., ... Blaser, M. J. (2016). Antibiotics, birth mode, and diet shape microbiome maturation during early life. Science Translational Medicine, 8(343), 343ra82. https://doi.org/10.1126/scitranslmed.aad7121
Choi, J. J., Eum, S. Y., Rampersaud, E., Daunert, S., Abreu, M. T., & Toborek, M. (2013). Exercise attenuates PCB-induced changes in the mouse gut microbiome. Environmental Health Perspectives, 121(6), 725–730. https://doi.org/10.1289/ehp.1306534
Claesson, M. J., Jeffery, I. B., Conde, S., Power, S. E., O'Connor, E. M., Cusack, S., … O’Toole, P. W. (2012). Gut microbiota composition correlates with diet and health in the elderly. Nature, 488(7410), 178-184. https://doi.org/10.1038/nature11319
Clarke, G., Grenham, S., Scully, P., Fitzgerald, P., Moloney, R., Shanahan, F., …Cryan, J. F. (2013). The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Molecular Psychiatry, 18(6), 666-673. https://doi.org/10.1038/mp.2012.77
Clarke, S. F., Murphy, E. F., O'Sullivan, O., Lucey, A. J., Humphreys, M., Hogan, A., ... Cotter, P. D. (2014). Exercise and associated dietary extremes impact on gut microbial diversity. Gut, 63(12), 1913-1920. https://doi.org/10.1136/gutjnl-2013-306541
Clemente, J. C., Ursell, L. K., Parfrey, L. W., & Knight, R. (2012). The impact of the gut microbiota on human health: an integrative view. Cell, 148(6), 1258-1270. https://doi.org/10.1016/j.cell.2012.01.035
Colcombe, S. J., Erickson, K. I., Scalf, P. E., Kim, J. S., Prakash, R., McAuley, E., … Kramer, A. F. (2006). Aerobic exercise training increases brain volume in aging humans. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 61(11), 1166–1170. https://doi.org/10.1093/gerona/61.11.1166
Cook, M. D., Allen, J. M., Pence, B. D., Wallig, M. A., Gaskins, H. R., White, B. A., & Woods, J. A. (2016). Exercise and gut immune function: evidence of alterations in colon immune cell homeostasis and microbiome characteristics with exercise training. Immunology and Cell Biology, 94(2), 158-163. https://doi.org/10.1038/icb.2015.108
Cryan, J. F., & Dinan, T. G. (2012). Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nature Reviews Neuroscience, 13(10), 701-712. https://doi.org/10.1038/nrn3346
Dalton, A., Mermier, C., & Zuhl, M. (2019). Exercise influence on the microbiome-gut-brain axis. Gut Microbes, 10(5), 555-568. https://doi.org/10.1080/19490976.2018.1562268.
Dieterich, W., Schink, M., & Zopf, Y. (2018). Microbiota in the gastrointestinal tract. Medical Sciences (Basel, Switzerland), 6(4), 116. https://doi.org/10.3390/medsci6040116
Dokladny, K., Zuhl, M. N., & Moseley, P. L. (2015). Intestinal epithelial barrier function and tight junction proteins with heat and exercise. Journal of Applied Physiology, 120(6), 692–701. https://doi.org/10.1152/japplphysiol.00536.2015
Eckburg, P. B., Bik, E. M., Bernstein, C. N., Purdom, E., Dethlefsen, L., Sargent M., ... Relman, D. A. (2005). Diversity of the human intestinal microbial flora. Science, 308(5728), 1635-1638. https://doi.org/10.1126/science.1110591
Estaki, M., Pither, J., Baumeister, P., Little, J. P., Gill, S. K., Ghosh, S., ... Gibson, D. L. (2016). Cardiorespiratory fitness as a predictor of intestinal microbial diversity and distinct metagenomic functions. Microbiome, 4(1), 42. https://doi.org/10.1186/s40168-016-0189-7
Evans, J. M., Morris, L. S., & Marchesi, J. R. (2013). The gut microbiome: the role of a virtual organ in the endocrinology of the host. Journal of Endocrinology, 218(3), R37–R47. https://doi.org/10.1530/joe-13-0131
Farzi, A., Fröhlich, E. E., & Holzer, P. (2018). Gut microbiota and the neuroendocrine system. Neurotherapeutics: the Journal of the American Society for Experimental NeuroTherapeutics, 15(1), 5–22. https://doi.org/10.1007/s13311-017-0600-5
Flint, H. J., Scott, K. P., Louis, P., & Duncan, S. H. (2012). The role of the gut microbiota in nutrition and health. Nature Reviews Gastroenterology & Hepatology, 9(10), 577–589. https://doi.org/10.1038/nrgastro.2012.156
Forsythe, P., Kunze, W. A., & Bienenstock, J. (2012). On communication between gut microbes and the brain. Current Opinion in Gastroenterology, 28(6), 557–562. https://doi.org/10.1097/MOG.0b013e3283572ffa
Forsythe, P., Kunze, W., & Bienenstock, J. (2016). Moody microbes or fecal phrenology: what do we know about the microbiota-gut-brain axis? BMC Medicine, 14, 58. https://doi.org/10.1186/s12916-016-0604-8
Garrett, W. S. (2015). Cancer and the microbiota. Science, 348(6230), 80-86. https://doi.org/10.1126/science.aaa4972
Ghaisas, S., Maher, J., & Kanthasamy, A. (2016). Gut microbiome in health and disease: linking the microbiome-gut-brain axis and environmental factors in the pathogenesis of systemic and neurodegenerative diseases. Pharmacology & Therapeutics, 158, 52-62. https://doi.org/10.1016/j.pharmthera.2015.11.012
Grenham, S., Clarke, G., Cryan, J. F., & Dinan, T. G. (2011). Brain-gut-microbe communication in health and disease. Frontiers in Physiology, 2, 94. https://doi.org/10.3389/fphys.2011.00094
Hsiao, E. Y., McBride, S. W., Hsien, S., Sharon, G., Hyde, E. R., McCue, T., ... Mazmanian, S. K. (2013). Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell, 155(7), 1451–1463. https://doi.org/10.1016/j.cell.2013.11.024
Jackson, M. A., Jeffery, I. B., Beaumont, M., Bell J. T., Clark, A. G., Ley, R. E., ... Steves, C. J. (2016). Signatures of early frailty in the gut microbiota. Genome Medicine, 8(1), 8. https://doi.org/10.1186/s13073-016-0262-7
Jenkins, T. A., Nguyen, J. C., Polglaze, K. E., & Bertrand, P. P. (2016). Influence of tryptophan and serotonin on mood and cognition with a possible role of the gut-brain axis. Nutrients, 8(1), 56. https://doi.org/10.3390/nu8010056
Juneau, M., Hayami, D., Gayda, M., Lacroix, S., & Nigam, A. (2014). Provocative issues in heart disease prevention. Canadian Journal of Cardiology, 30(12 Suppl), S401-409. https://doi.org/10.1016/j.cjca.2014.09.014
Kashtanova, D. A., Popenko, A. S., Tkacheva, O. N., Tyakht, A. B., Alexeev, D. G., & Boytsov, S. A. (2016). Association between the gut microbiota and diet: fetal life, early childhood, and further life. Nutrition, 32(6), 620-627. https://doi.org/10.1016/j.nut.2015.12.037
Kim, Y. K., & Shin, C. (2018). The microbiota-gut-brain axis in neuropsychiatric disorders: pathophysiological mechanisms and novel treatments. Current Neuropharmacology, 16(5), 559-573. https://doi.org/10.2174/1570159X15666170915141036
Knauf, F., Brewer, J. R., & Flavell, R. A. (2019). Immunity, microbiota and kidney disease. Nature Reviews Nephrology, 15, 263–274. https://doi.org/10.1038/s41581-019-0118-7
Kriss, M., Hazleton, K. Z., Nusbacher, N. M., Martin, C. G., & Lozupone, C. A. (2018). Low diversity gut microbiota dysbiosis: drivers, functional implications and recovery. Current Opinion in Microbiology, 44, 34-40. https://doi.org/10.1016/j.mib.2018.07.003
Levy, M., Kolodziejczyk, A. A., Thaiss, C. A., & Elinav, E. (2017). Dysbiosis and the immune system. Nature Reviews Immunology, 17(4), 219-232. https://doi.org/10.1038/nri.2017.7
Marchesi, J. R., Adams, D. H., Fava, F., Hermes, G. D., Hirschfield, G. M., Hold, G., ... Hart, A. (2016). The gut microbiota and host health: a new clinical frontier. Gut, 65(2), 330-339. https://doi.org/10.1136/gutjnl-2015-309990
Matsumoto, M., Inoue, R., Tsukahara, T., Ushida, K., Chiji, H., Matsubara, N., & Hara, H. (2008). Voluntary running exercise alters microbiota composition and increases n-butyrate concentration in the rat cecum. Bioscience, Biotechnology and Biochemistry, 72(2), 572–576. https://doi.org/10.1271/bbb.70474
McKenzie, C., Tan, J., Macia, L., & Mackay, C. R. (2017). The nutrition-gut microbiome-physiology axis and allergic diseases. Immunology Reviews, 278(1), 277-295. https://doi.org/10.1111/imr.12556
Mika, A., Van Treuren, W., González, A., Herrera, J. J., Knight, R., & Fleshner, M. (2015). Exercise is more effective at altering gut microbial composition and producing stable changes in lean mass in juvenile versus adult male F344 rats. PloS one, 10(5), e0125889. https://doi.org/10.1371/journal.pone.0125889
Milani, C., Duranti, S., Bottacini, F., Casey, E., Turroni, F., Mahony, J., ... Ventura, M. (2017). The first microbial colonizers of the human gut: composition, activities, and health implications of the infant gut microbiota. Microbiology and Molecular Biology Reviews, 81(4), e00036-17. https://doi.org/10.1128/MMBR.00036-17
Milani, C., Ferrario, C., Turroni, F., Duranti, S., Mangifesta, M., van Sinderen, D., & Ventura, M. (2016). The human gut microbiota and its interactive connections to diet. Journal of Human Nutrition and Dietetics, 29(5), 539-546. https://doi.org/10.1111/jhn.12371
Monda, V., Villano, I., Messina, A., Valenzano, A., Esposito, T., Moscatelli, F., ... Messina, G. (2017). Exercise modifies the gut microbiota with positive health effects. Oxidative Medicine and Cellular Longevity, 2017, 3831972. https://doi.org/10.1155/2017/3831972
Murtaza, N., Burke, L. M., Vlahovich, N., Charlesson, B., O’ Neill, H., Ross, M. L., ... Morrison, M. (2019). The effects of dietary pattern during intensified training on stool microbiota of elite race walkers. Nutrients, 11(2), 261. https://doi.org/10.3390/nu11020261
Nicholson, J. K., Holmes, E., Kinross, J., Burcelin, R., Gibson, G., Jia, W., & Pettersson, S. (2012). Host-gut microbiota metabolic interactions. Science, 336(6086), 1262–1267. https://doi.org/10.1126/science.1223813
O’Hara, A. M., & Shanahan, F. (2006). The gut flora as a forgotten organ. EMBO Reports, 7(7), 688–693. https://doi.org/10.1038/sj.embor.7400731
Ohlsson, C., & Sjögren, K. (2015). Effects of the gut microbiota on bone mass. Trends in Microbiology, 26(2), 69-74. https://doi.org/10.1016/j.tem.2014.11.004
O’Mahony, S., Clarke, G., Borre, Y., Dinan, T. & Cryan, J. (2015). Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behavioural Brain Research, 277, 32–48. https://doi.org/10.1016/j.bbr.2014.07.027
Petersen, L. M., Bautista, E. J., Nguyen, H., Hanson, B. M., Chen, L., Lek, S. H., ... Weinstock, G. M. (2017). Community characteristics of the gut microbiomes of competitive cyclists. Microbiome, 5(1), 98. https://doi.org/10.1186/s40168-017-0320-4
Proctor, C., Thiennimitr, P., Chattipakorn, N., & Chattipakorn, S. C. (2017). Diet, gut microbiota and cognition. Metabolic Brain Disease, 32(1), 1–17. https://doi.org/10.1007/s11011-016-9917-8
Qin, N., Yang, F., Li, A., Prifti, E., Chen, Y., Shao, L., ... Li, L. (2014). Alterations of the human gut microbiome in liver cirrhosis. Nature, 513(7516), 59-64. https://doi.org/10.1038/nature13568
Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S., & Medzhitov, R. (2004). Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell, 118(2), 229–241. https://doi.org/10.1016/j.cell.2004.07.002
Rodriguez, J. M., Murphy, K., Stanton, C., Ross, R. P., Kober, O. I., Juge, N., Collado, M. C. (2015). The composition of the gut microbiota throughout life, with an emphasis on early life. Microbial Ecology in Health and Disease, 26(2), 26050, https://doi.org/10.3402/mehd.v26.26050
Samuel, B. S., Shaito, A., Motoike, T., Rey, F. E., Backhed, F., Manchester, J. K., ... Gordon, J. I. (2008). Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proceedings of the National Academy of Sciences of the United States of America, 105(43), 16767–16772. https://doi.org/10.1073/pnas.0808567105
Schmidt, T. S. B., Raes, J., & Bork, P. (2018). The human gut microbiome: from association to modulation. Cell, 172(6), 1198-1215. https://doi.org/10.1016/j.cell.2018.02.044
Sudo, N., Chida, Y., Aiba, Y., Sonoda, J., Oyama, N., Yu, X. N., … Koga, Y. (2004). Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. The Journal of Physiology, 558(1), 263–275. https://doi.org/10.1113/jphysiol.2004.063388
Tan, X., Saarinen, A., Mikkola, T. M., Tenhunen, J., Martinmäki, S., Rahikainen, A., … Cheng, S. (2013). Effects of exercise and diet interventions on obesity-related sleep disorders in men: study protocol for a randomized controlled trial. Trials, 14, 235. https://doi.org/10.1186/1745-6215-14-235
Tanaka, M., & Nakayama, J. (2017). Development of the gut microbiota in infancy and its impact on health in later life. Allergology International, 66(4), 515-522. https://doi.org/10.1016/j.alit.2017.07.010
Taniguchi, H., Tanisawa, K., Sun, X., Kubo, T., Hoshino, Y., Hosokawa, … Higuchi, M. (2018). Effects of short-term endurance exercise on gut microbiota in elderly men. Physiological Reports, 6(23), e13935. https://doi.org/10.14814/phy2.13935
Ticinesi, A., Lauretani, F., Tana, C., Nouvenne, A., Ridolo, E., & Meschi, T. (2019). Exercise and immune system as modulators of intestinal microbiome: implications for the gut-muscle axis hypothesis. Exercise Immunology Review, 25, 84-95. Retrieved from: http://eir-isei.de/2019/eir-2019-084-article.pdf
Tsigos, C. & Chrousos, G. P. (2002). Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. The Journal of Psychosomatic Research, 53(4), 865–871. https://doi.org/10.1016/S0022-3999(02)00429-4
Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., Magrini, V., Mardis, E. R., & Gordon, J. I. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 444(7122), 1027-1031. https://doi.org/10.1038/nature05414
Vaishnava, S., Behrendt, C. L., Ismail, A. S., Eckmann, L., & Hooper, L. V. (2008). Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proceedings of the National Academy of Sciences, 105(52), 20858–20863. https://doi.org/10.1073/pnas.0808723105
Walsh, N. P., Gleeson, M., Shephard, R. J., Gleeson, M., Woods, J. A., Bishop, N. C., … Simon, P. (2011). Position statement. Part one: Immune function and exercise. Exercise Immunology Review, 17, 6-63. Retrieved from: http://eir-isei.de/2011/eir-2011-006-article.pdf
Welly, R. J., Liu, T. W., Zidon, T. M., Rowles, J. L., Park, Y. M., Smith, T. N., … Vieira-Potter, V. (2016). Comparison of diet vs. exercise on metabolic function & gut microbiota in obese rats. Medicine & Science in Sports & Exercise, 48(9), 1688-1698. https://doi.org/10.1249/MSS.0000000000000964
Yano, J. M., Yu, K., Donaldson, G. P., Shastri, G. G., Ann, P., Ma, L., … Hsiao, E. Y. (2015). Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell, 161(2), 264–276. https://doi.org/10.1016/j.cell.2015.02.047
Yatsunenko, T., Rey, F. E., Manary, M. J., Trehan, I., Dominguez-Bello, M. G., Contreras, M., … Gordon, J. I. (2012). Human gut microbiome viewed across age and geography. Nature, 486(7402), 222–227. https://doi.org/10.1038/nature11053
Downloads
Published
How to Cite
Issue
Section
License
Open Access Policy and Copyright
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under the terms of the Creative Commons Attribution license (CC BY) that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.
- Authors grant the publisher commercial rights to produce hardcopy volumes of the journal for sale to libraries and individuals.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.