EXERCISE EFFECTS ON MUSCLE STEM CELLS
DOI:
https://doi.org/10.35469/ak.2017.134Keywords:
Satellite cells, acute and chronic exercises, micro damage, muscle regenerationAbstract
Satellite cells are skeletal muscle stem cells that facilitate muscle repair and regeneration after “damage” which occurs after physiological stimuli: exercise, post-training micro-injuries and electrical stimulation. Exercise stimuli lead to activation and proliferation of these cells from their quiescent state, therefore, increasing cell numbers having the potential to provide additional myonuclei to their parent muscle fibre or return to a quiescent state. Different exercise modalities are the focus of numerous studies on satellite cells activation. An increase in muscle activity augments satellite cells proliferation as well as skeletal muscle mass and function, both in young and elderly.
This review provides an updated view of the contribution of skeletal muscle satellite cells in regulating skeletal muscle mass and the efficiency of the exercise intervention to attenuate the decline in muscle mass.
References
Bazgir, B., Fathi, R., Rezazadeh Valojerdi, M., Mozdziak, P., & Asgari, A. (2017). Satellite cells contribution to exercise mediated muscle hypertrophy and repair. Cell Journal, 18(4), 473-484. https://doi.org/10.22074/cellj.2016.4714
Bengal, E., Perdiguero, E., Serrano, A. L., & Muñoz-Cánoves, P. (2017). Rejuvenating stem cells to restore muscle regeneration in aging. F1000Research, 6(76). https://doi.org/10.12688/f1000research.9846.1
Bischoff, R., & Heintz, C. (1994). Enhancement of skeletal muscle regeneration. Developmental dynamics, 201(1), 41-54. https://doi.org/10.1002/aja.1002010105
Bjornson, C. R. R., Cheung, T. H., Liu, L., Tripathi, P. V., Steeper, K. M. & Rando, T. A. (2012). Notch signaling is necessary to maintain quiescence in adult muscle stem cells. Stem Cells, 30(2), 232–242. https://doi.org/10.1002/stem.773
Blaauw, B., & Reggiani, C. (2014). The role of satellite cells in muscle hypertrophy. Journal of Muscle Research and Cell Motility, 35(1), 3-10. https://doi.org/10.1007/s10974-014-9376-y
Chargé, S. B., & Rudnicki, M. A. (2004). Cellular and molecular regulation of muscle regeneration. Physiological reviews, 84(1), 209-238. https://doi.org/10.1152/physrev.00019.2003
Conboy, I. M., Conboy, M. J., Smythe, G. M., & Rando, T. A. (2003). Notch-mediated restoration of regenerative potential to aged muscle. Science, 302(5650), 1575-1577. https://doi.org/10.1126/science.1087573
Darr, K. C., & Schultz, E. (1987). Exercise-induced satellite cell activation in growing and mature skeletal muscle. Journal of Applied Physiology, 63(5), 1816–1821. https://doi.org/10.1152/jappl.1987.63.5.1816
Delbono, O., O'Rourke, K. S., & Ettinger, W. H. (1995). Excitation-calcium release uncoupling in aged single human skeletal muscle fibers. Journal of Membrane Biology, 148(3), 211-222. https://doi.org/10.1007/BF00235039
Dellavalle, A., Maroli, G., Covarello, D., Azzoni, E., Innocenzi, A., Perani, L., et al., (2011). Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells. Nature Communications, 2, art.no. 499. https://doi.org/10.1038/ncomms1508
Dhawan, J., & Rando, T. A. (2005). Stem cells in postnatal myogenesis: molecular mechanisms of satellite cell quiescence, activation and replenishment. Trends in Cell Biology, 15(12), 666-673. https://doi.org/10.1016/j.tcb.2005.10.007
Gibala, M. J., MacDougall, J. D., Tarnopolsky, M. A., Stauber, W. T., & Elorriaga, A. (1995). Changes in human skeletal muscle ultrastructure and force production after acute resistance exercise. Journal of Applied Physiology, 78(2), 702-708. https://doi.org/10.1152/jappl.1995.78.2.702
Hall, Z. W., & Ralston, E. (1989). Nuclear domains in muscle cells. Cell, 59, 771-772.
Joanisse, S., Nederveen, J. P., Snijders, T., McKay, B. R., & Parise, G. (2017). Skeletal muscle regeneration, repair and remodelling in aging: the importance of muscle stem cells and vascularization. Gerontology, 63(1), 91-100. https://doi.org/10.1159/000450922
Kadi, F., Charifi, N., Denis, C., & Lexell, J. (2004). Satellite cells and myonuclei in young and elderly women and men. Muscle & Nerve, 29(1), 120-127. https://doi.org/10.1002/mus.10510
Kadi. F., Charifi, N., & Henriksson, J. (2006). The number of satellite cells in slow and fast fibers from human vastus lateralis muscle. Histochemistry and Cell Biology, 126(1), 83-87. https://doi.org/10.1007/s00418-005-0102-0
Martin, N. R. W., & Lewis, M. P. (2012). Satellite cell activation and number following acute and chronic exercise: A mini review. Cellular and Molecular Exercise Physiology, 1(1), 1-5. https://doi.org/10.7457/cmep.v1i1.e3
Mauro, A. (1961). Satellite cell of skeletal muscle fibers. Journal of Biophysical and Biochemical Cytology, 9(2), 493-495.
McKay, B. R., De Lisio, M., Johnston, A. P., O'Reilly, C. E., Phillips, S. M., Tarnopolsky, M. A., & Parise, G. (2009). Association of interleukin-6 signalling with the muscle stem cell response following muscle-lengthening contractions in humans. PLoS One, 4(6), e6027. https://doi.org/10.1371/journal.pone.0006027
O'Reilly, C., McKay, B., Phillips, S., Tarnopolsky, M., & Parise, G. (2008). Hepatocyte growth factor (HGF) and the satellite cell response following muscle lengthening contractions in humans. Muscle & Nerve 38(5), 1434-1442. https://doi.org/10.1002/mus.21146
Parise, G., McKinnell, I. W., & Rudnicki, M. A. (2008). Muscle satellite cell and atypical myogenic progenitor response following exercise. Muscle & Nerve, 37(5), 611-619. https://doi.org/10.1002/mus.20995
Petrella, J. K., Kim, J. S., Mayhew, D. L., Cross, J. M., & Bamman, M. M. (2008). Potent myofiber hypertrophy during resistance training in humans is associated with satellite cell-mediated myonuclear addition: A cluster analysis. Journal of Applied Physiology, 104(6), 1736-1742. https://doi.org/10.1152/japplphysiol.01215.2007
Rando, T. A., & Chang, H. Y. (2012). Aging, rejuvenation, and epigenetic reprogramming: Resetting the aging clock. Cell, 148(1-2), 46–57. https://doi.org/10.1016/j.cell.2012.01.003
Renault, V., Thorne, L. E., Eriksson, P. O., Butler-Browne, G., & Mouly, V. (2002). Regenerative potential of human skeletal muscle during aging. Aging Cell, 1(2), 132–139. https://doi.org/10.1046/j.1474-9728.2002.00017.x
Roth, S. M., Martel, G. F., Ivey, F. M., Lemmer, J. T, Metter, E. J., Hurley, B. F., & Rogers, M. A. (2000). Skeletal muscle satellite cell populations in healthy young and older men and women. Anatomical Record, 260(4), 351-358. https://doi.org/10.1002/1097-0185(200012)260:4<350::AID-AR30>3.0.CO;2-6
Sajko, Š., Kubinova, L., Cvetko, E., Kreft, M., Wernig, A., & Eržen, I. (2004). Frequency of M-cadherin-stained satellite cells declines in human muscles during aging. Journal of Histochemistry & Cytochemistry, 52(2), 179–185. https://doi.org/10.1177/002215540405200205
Seale, P., & Rudnicki, M. A. (2000). A new look at the origin, function, and "stem-cell" status of muscle satellite cells. Developmental biology, 218(2), 115-124. https://doi.org/10.1006/dbio.1999.9565
Shefer, G., Rauner, G., Yablonka-Reuveni, Z., & Benayahu, D. (2010). Reduced satellite cell numbers and myogenic capacity in aging can be alleviated by endurance exercise. PLoS One, 5(10), e13307. https://doi.org/10.1371/journal.pone.0013307
Sousa-Victor, P., & Muñoz-Cánoves, P. (2016). Regenerative decline of stem cells in sarcopenia. Molecular aspects of medicine, 50, 109-117. https://doi.org/10.1016/j.mam.2016.02.002
Smith, H. K., Maxwell, L., Rodgers, C. D., McKee, N. H., & Plyley, M. J. (2001). Exercise-enhanced satellite cell proliferation and new myonuclear accretion in rat skeletal muscle. Journal of Applied Physiology, 90(4), 1407–1414. https://doi.org/10.1152/jappl.2001.90.4.1407
Smith, H. K., & Merry, T. L. (2012). Voluntary resistance wheel exercise during post-natal growth in rats enhances skeletal muscle satellite cell and myonuclear content at adulthood. Acta physiologica, 204(3), 393–402. https://doi.org/10.1111/j.1748-1716.2011.02350.x
Schiaffino, S., & Reggiani, C. (2011). Fiber types in mammalian skeletal muscles. Physiological reviews, 91(4), 1447-1531. https://doi.org/10.1152/physrev.00031.2010
Snijders, T., & Parise, G. (2017). Role of muscle stem cells in sarcopenia. Current Opinion in Clinical Nutrition & Metabolic Care, 20(3), 186-190. https://doi.org/10.1097/MCO.0000000000000360
Snijders, T., Verdijk, L. B., Beelen, M., McKay, B. R., Parise, G., Kadi, F., & van Loon, L. J. (2012). A single bout of exercise activates skeletal muscle satellite cells during subsequent overnight recovery. Experimental Physiology, 97(6), 762-773. https://doi.org/10.1113/expphysiol.2011.063313
Snijders, T., Verdijk, L. B., Hansen, D., Dendale, P., & van Loon, L. J. (2011). Continuous endurance-type exercise training does not modulate satellite cell content in obese type 2 diabetes patients. Muscle & Nerve, 43(3), 393-401. https://doi.org/10.1002/mus.21891
Thornell, L. E., Lindström, M., Renault, V., Mouly, V. & Butler-Browne, G. S. (2003). Satellite cells and training in the elderly. Scandinavian Journal of Medicine & Science in Sports, 13(1), 48-55. https://doi.org/10.1034/j.1600-0838.2003.20285.x
Van de Vyver, M., & Myburgh, K. H. (2012). Cytokine and satellite cell responses to muscle damage: interpretation and possible confounding factors in human studies. Journal of Muscle Research and Cell Motility, 33(3-4), 177–185. https://doi.org/10.1007/s10974-012-9303-z
Verdijk, L. B., Gleeson, B. G., Jonkers, R. A., Meijer, K., Savelberg, H. H., Dendale, P. & van Loon L. J. (2009). Skeletal muscle hypertrophy following resistance training is accompanied by a fiber type-specific increase in satellite cell content in elderly men. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 64A(3), 332-339. https://doi.org/10.1093/gerona/gln050
Verdijk, L. B., Koopman, R., Schaart, G., Meijer, K., Savelberg, H. H. & van Loon L. J. (2007). Satellite cell content is specifically reduced in type II skeletal muscle fibers in the elderly. American Journal of Physiology Endocrinology and Metabolism, 292(1), E151-E157. https://doi.org/10.1152/ajpendo.00278.2006
Verney, J., Kadi, F., Charifi, N., Féasson, L., Saafi, M. A., Castells, J., et al. (2008). Effects of combined lower body endurance and upper body resistance training on the satellite cell pool in elderly subjects. Muscle & Nerve, 38(3), 1147–1154. https://doi.org/10.1002/mus.21054
Wernig, A. (2003). Regeneration capacity of skeletal muscle. Therapeutische Umschau, 60(7), 383-389. https://doi.org/10.1024/0040-5930.60.7.383
Yin, H., Price, F., & Rudnicki, M. A. (2013). Satellite cells and the muscle stem cell niche. Physiological Reviews, 93(1), 23-67. https://doi.org/10.1152/physrev.00043.2011
Downloads
Published
How to Cite
Issue
Section
License
Open Access Policy and Copyright
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under the terms of the Creative Commons Attribution license (CC BY) that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.
- Authors grant the publisher commercial rights to produce hardcopy volumes of the journal for sale to libraries and individuals.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.