VIBRATION AND BONE – AN OPTION FOR LONG-TERM SPACE MISSIONS?

Authors

  • Jörn Rittweger German Aerospace Center, Institute of Aerospace Medicine, Linder Höhe

Abstract

Bone is lost during sojourns in microgravity. Thus to prevent fractures in future manned inter-planetary missions, efforts are currently being made to develop effective countermeasures. Bones adapt to mechanical stimuli, and biomechanical analysis suggests that muscle forces play an important role. Thus, resistance training is advocated as first option for a countermeasure modality. In addition, vibration has certain characteristics (well controllable, rapid stretch-shortening and large rate of contractions) that could be of interest. Studies of the past decade have shown that conventional resistive exercise may be sufficient to maintain bone when performed on a daily basis, but when performed only every other day. Whole body vibration without additional load seems to be in-effective, but it shows good potential, and probably a genuine effect upon bone when combined with additional loads in the order of twice the body weight. Thus, there is now accumulating evidence to suggest that effective exercises exist to counteract microgravity-related bone loss. At least for bed rest, forceful muscle contractions seem to be a prerequisite. They may be fortified, but probably not replaced, by vibration exposure.

References

Abercromby, A. F., Amonette, W. E., Layne, C. S., McFarlin, B. K., Hinman, M. R., & Paloski, W. H. (2007). Vibration exposure and biodynamic responses during whole-body vibration training. Med Sci Sports Exerc, 39(10), 1794-1800.

Alkner, B. A., & Tesch, P. A. (2004). Knee extensor and plantar flexor muscle size and function in response to 90 d bed rest with or without resistance exercise. Eur J Appl Physiol, 93 (3), 294.

Baecker, N., Frings-Meuthen, P., Heer, M., Mester, J., & Liphardt, A. M. (2011). Effects of vibration training on bone metabolism: results from a short-term bed rest study. Eur J Appl Physiol. doi: 10.1007/s00421-011-2137-3

Belavy, D. L., Beller, G., Armbrecht, G., Perschel, F. H., Fitzner, R., Bock, O., . . . et al. (2011). Evidence for an additional effect of whole-body vibration above resistive exercise alone in preventing bone loss during prolonged bed rest. Osteoporos Int, 22(5), 1581-1591. doi: 10.1007/s00198-010-1371-6

Blottner, D., Salanova, M., Puttmann, B., Schiffl, G., Felsenberg, D., Buehring, B., & Rittweger, J. (2006). Human skeletal muscle structure and function preserved by vibration muscle exercise following 55 days of bed rest. Eur J Appl Physiol, 97(3), 261-271.

Cochrane, D. J., Loram, I. D., Stannard, S. R., & Rittweger, J. (2009). Changes in joint angle, muscle-tendon complex length, muscle contractile tissue displacement, and modulation of EMG activity during acute whole-body vibration Muscle Nerve, 40(3), 420-429.

Cochrane, D. J., Sartor, F., Winwood, K., Stannard, S. R., Narici, M. V., & Rittweger, J. (2008). A comparison of the physiologic effects of acute whole-body vibration exercise in young and older people. Arch Phys Med Rehabil, 89(5), 815-821.

Eser, P., Frotzler, A., Zehnder, Y., Knecht, H., Denoth, J., & Schiessl, H. (2004). Relationship between the duration of paralysis and bone structure: a pQCT study of spinal cord injured individuals. Bone, 34 (5), 869-880.

Frost, H. M. (1987). Bone "mass" and the "mechanostat": a proposal. Anat Rec, 219(1), 1-9.

Frost, H. M. (1997). Why do marathon runners have less bone than weight lifters? A vital- biomechanical view and explanation. Bone, 20(3), 183-189.

Globus, R. K., Bikle, D. D., Halloran, B., & Morey-Holton, E. (1986). Skeletal response to dietary calcium in a rat model simulating weightlessness. J Bone Miner Res, 1(2), 191-197.

Griffiths, H. J., Bushueff, B., & Zimmermann, R. E. (1976). Investigation of the loss of bone mineral in patients with spinal cord injury. Paraplegia, 14, 207-212.

Halloran, B. P., Bikle, D. D., Wronski, T. J., Globus, R. K., Levens, M. J., & Morey-Holton, E. (1985). Effect of simulated weightlessness and chronic 1,25-dihydroxyvitamin D administration on bone metabolism. Physiologist, 28(6 Suppl), S127-S128.

Jee, W. S. S., Li, X. J., & Ke, H. Z. (1991). The skeletal adaptation to mechanical usage in the rat. Cells and Materials, Suppl.1, 131.

Jorgensen, L., Crabtree, N. J., Reeve, J., & Jacobsen, B. K. (2000). Ambulatory level and asymmetrical weight bearing after stroke affects bone loss in the upper and lower part of the femoral neck differently: bone adaptation after decreased mechanical loading. Bone, 27(5), 701-707.

Kakurin, L. I., Kuzmin, M. P., Matsnev, E. I., & Mikhailov, V. M. (1976). Physiological effects induced by antiorthostatic hypokinesia. Life Sci Space Res, 14, 101-108.

Kakurin, L. I., Lobachik, V. I., Mikhailov, V. M., & Senkevich, Y. A. (1976). Antiorthostatic hypokinesia as a method of weightlessness simulation. Aviat Space Environ Med, 47(10), 1083-1086.

Lang, T. F., Leblanc, A. D., Evans, H. J., & Lu, Y. (2006). Adaptation of the proximal femur to skeletal reloading after long-duration spaceflight. J Bone Miner Res, 21(8), 1224-1230.

LeBlanc, A. D., Schneider, V. S., Evans, H. J., Engelbretson, D. A., & Krebs, J. M. (1990). Bone mineral loss and recovery after 17 weeks of bed rest. J Bone Miner Res, 5(8), 843-850.

Leppala, J., Kannus, P., Natri, A., Pasanen, M., Sievanen, H., Vuori, I., & Jarvinen, M. (1999). Effect of anterior cruciate ligament injury of the knee on bone mineral density of the spine and affected lower extremity: a prospective one-year follow-Up study. Calcif Tissue Int, 64(4), 357-363.

Maganaris, C. N., Rittweger, J., & Narici, M. V. (2011). Adaptive Processes in Human Bone and Tendon. In M. Cardinale, R. Newton & K. Nosaka (Eds.), Strength and Conditioning. Biological Principles and Practical Applications (pp. 137-147). Oxford: Wiley-Blackwell.

Morey-Holton, E. R., & Globus, R. K. (1998). Hindlimb unloading of growing rats: a model for predicting skeletal changes during space flight. Bone, 22(5 Suppl), 83S-88S.

Mosley, J. R., & Lanyon, L. E. (1998). Strain rate as a controlling influence on adaptive modeling in response to dynamic loading of the ulna in growing male rats. Bone, 23(4), 313-318.

Okumura, H., Yamamuro, T., Kasai, R., Hayashi, T., Tada, K., & Nishii, Y. (1987). Effect of 1 alpha-hydroxyvitamin D3 on osteoporosis induced by immobilization combined with ovariectomy in rats. Bone, 8(6), 351-355.

Pavy-Le Traon, A., Heer, M., Narici, M. V., Rittweger, J., & Vernikos, J. (2007). From space to Earth: advances in human physiology from 20 years of bed rest studies (1986-2006). Eur J Appl Physiol, 101(2), 143-194.

Qin, Y. X., Rubin, C. T., & McLeod, K. J. (1998). Nonlinear dependence of loading intensity and cycle number in the maintenance of bone mass and morphology. J Orthop Res, 16(4), 482-489.

Rauch, F., Sievanen, H., Boonen, S., Cardinale, M., Degens, H., Felsenberg, D., . . . Rittweger, J. (2010). Reporting whole-body vibration intervention studies: recommendations of the International Society of Musculoskeletal and Neuronal Interactions. J Musculoskelet Neuronal Interact, 10(3), 193-198.

Rittweger, J. (2010). Vibration as an exercise modality: How it may work, and what its potential might be. Eur J Appl Physiol, 108(5), 877-904.

Rittweger, J., Belavy, D., Hunek, P., Gast, U., Boerst, H., Feilcke, B., . . . Felsenberg, D. (2006). Highly demanding resistive exercise program is tolerated during 56 days of strict bed rest. Int J Sports Med, 27(7), 553-559.

Rittweger, J., Beller, G., Armbrecht, G., Mulder, E., Buehring, B., Gast, U., . . . Felsenberg, D. (2010). Prevention of bone loss during 56 days of strict bed rest by side-alternating resistive vibration exercise. Bone, PMID: 19732856(46), 137-147.

Rittweger, J., Ehrig, J., Just, K., Mutschelknauss, M., Kirsch, K. A., & Felsenberg, D. (2002). Oxygen uptake in whole-body vibration exercise: influence of vibration frequency, amplitude, and external load. Int.J Sports Med., 23(6), 428-432.

Rittweger, J., Frost, H. M., Schiessl, H., Ohshima, H., Alkner, B., Tesch, P., & Felsenberg, D. (2005). Muscle atrophy and bone loss after 90 days of bed rest and the effects of flywheel resistive exercise and pamidronate: results from the LTBR study. Bone, 36(6), 1019-1029.

Rittweger, J., Just, K., Kautzsch, K., Reeg, P., & Felsenberg, D. (2002). Treatment of chronic lower back pain with lumbar extension and whole-body vibration exercise: a randomized controlled trial. Spine, 27(17), 1829-1834.

Rittweger, J., Schiessl, H., & Felsenberg, D. (2001). Oxygen-uptake during whole body Vibration Exercise: Comparison with squatting as a slow voluntary movement. Eur J Appl Physiol, 86, 169-173.

Ritzmann, R., Kramer, A., Gollhofer, A., & Taube, W. (2011). The effect of whole body vibration on the H-reflex, the stretch reflex, and the short-latency response during hopping. Scand J Med Sci Sports. doi: 10.1111/j.1600-0838.2011.01388.x

Rubin, C., Turner, A. S., Bain, S., Mallinckrodt, C., & McLeod, K. (2001). Anabolism. Low mechanical signals strengthen long bones. Nature, 412(6847), 603-604.

Rubin, C. T., & Lanyon, L. E. (1987). Kappa Delta Award paper. Osteoregulatory nature of mechanical stimuli: function as a determinant for adaptive remodeling in bone. J Orthop Res, 5(2), 300-310.

Schriefer, J. L., Warden, S. J., Saxon, L. K., Robling, A. G., & Turner, C. H. (2005). Cellular accommodation and the response of bone to mechanical loading. J Biomech, 38(9), 1838-1845.

Shackelford, L. C., LeBlanc, A. D., Driscoll, T. B., Evans, H. J., Rianon, N. J., Smith, S. M., . . . Lai, D. (2004). Resistance exercise as a countermeasure to disuse-induced bone loss. J Appl Physiol, 97(1), 119-129.

Tuukkanen, J., Wallmark, B., Jalovaara, P., Takala, T., Sjogren, S., & Vaananen, K. (1991). Changes induced in growing rat bone by immobilization and remobilization. Bone, 12(2), 113-118.

Uhthoff, H. K., & Jaworski, Z. F. (1978). Bone loss in response to long-term immobilisation. J Bone Joint Surg.Br., 60-B(3), 420-429.

Vico, L., Chappard, D., Alexandre, C., Palle, S., Minaire, P., Riffat, G., . . . Rakhmanov, S. (1987). Effects of a 120 day period of bed-rest on bone mass and bone cell activities in man: attempts at countermeasure. Bone Miner, 2(5), 383-394.

Vico, L., Collet, P., Guignandon, A., Lafage-Proust, M. H., Thomas, T., Rehaillia, M., & Alexandre, C. (2000). Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts. Lancet, 355(9215), 1607-1611.

Vogel, J. M. (1975). Bone mineral measurement: Skylab experiment M-078. [Comparative Study

Research Support, U.S. Gov't, Non-P.H.S.]. Acta Astronaut, 2(1-2), 129-139.

Wang, H., Wan, Y., Tam, K. F., Ling, S., Bai, Y., Deng, Y., . . . Li, Y. (2011). Resistive vibration exercise retards bone loss in weight-bearing skeletons during 60 days bed rest. Osteoporos Int. doi: 10.1007/s00198-011-1839-z

Warner, S. E., Sanford, D. A., Becker, B. A., Bain, S. D., Srinivasan, S., & Gross, T. S. (2006). Botox induced muscle paralysis rapidly degrades bone. Bone, 38(2), 257-264.

Wolff, J. (1870). Über die innere Architektur und ihre Bedeutung für die Frage vom Knochenwachstum. Archiv für pathologische Anatomie und Physiologie, 50, 389-453.

Zange, J., Mester, J., Heer, M., Kluge, G., & Liphardt, A. M. (2008). 20-Hz whole body vibration training fails to counteract the decrease in leg muscle volume caused by 14 days of 6 degrees head down tilt bed rest. Eur J Appl Physiol, 105(2), 271-277.

Downloads

How to Cite

Rittweger, J. (2015). VIBRATION AND BONE – AN OPTION FOR LONG-TERM SPACE MISSIONS?. Annales Kinesiologiae, 3(1). Retrieved from http://ojs.zrs-kp.si/index.php/AK/article/view/59

Issue

Section

Articles