Influence of physical activity on linear growth in children and adolescents

  • Sončka Jazbinšek 1. Department of endocrinology, diabetes and metabolism, University Children’s hospital, University medical center Ljubljana, Bohoričeva 20, SI-1000 Ljubljana, Slovenia 2. Department of pediatrics, Faculty of medicine, University of Ljubljana, Bohoričeva 20, SI-1000 Ljubljana, Slovenia
  • Primož Kotnik 1. Department of endocrinology, diabetes and metabolism, University Children’s hospital, University medical center Ljubljana, Bohoričeva 20, SI-1000 Ljubljana, Slovenia 2. Department of pediatrics, Faculty of medicine, University of Ljubljana, Bohoričeva 20, SI-1000 Ljubljana, Slovenia
Keywords: linear growth, physical activity, energy balance, puberty, child

Abstract

Linear growth is the result of bone elongation in children and adolescents mediated by processes of endochondral ossification and maturation of bone tissue. Physical activity (PA) importantly influences both processes through systemic and local effects, mediated by growth hormone, insulin-like factor I, sex hormones, thyroid hormones, glucocorticoid hormones and various cytokines with endo-, para- and autocrine function, secreted by adipose tissue (adipokines) or muscles (myokines). It is important to promote a physically active lifestyle already in early childhood as it tends to persist into adulthood together with favorable body composition. From the safety point-of-view, recent data suggests that PA does not negatively influence linear growth regardless of its duration or intensity, as long as chronic negative energy balance is prevented by sufficient energy intake.

The aim of this review is to describe current scientific knowledge on the mechanisms by which PA could influence linear growth and present recent studies analyzing its possible effects.

 

References

Alves, J. B. G., & Alves, G. V. (2019). Effects of physical activity on children's growth. Jornal de Pediatria, 95(Suppl. 1), 72-78. https://doi.org/10.1016/j.jped.2018.11.003

Carson B. P. (2017). The potential role of contraction-induced myokines in the regulation of metabolic function for the prevention and treatment of type 2 diabetes. Frontiers in Endocrinology 8, 97. https://doi.org/10.3389/fendo.2017.00097

Chad, K. E., Bailey, D. A., McKay, H. A., Zello, G. A., & Snyder, R. E. (1999). The effect of a weight-bearing physical activity program on bone mineral content and estimated volumetric density in children with spastic cerebral palsy. The Journal of Pediatrics, 135(1), 115–117. https://doi.org/10.1016/s0022-3476(99)70340-9

Chahar, O. S. (2014). Physiological basis of growth and development among children and adolescents in relation to physical activity. American Journal of Sports Science and Medicine, 2(5), 17-22. https://doi.org/10.12691/ajssm-2-5A-5

Christie, L., Hine, R. J., Parker, J. G., & Burks, W. (2002). Food allergies in children affect nutrient intake and growth. Journal of the American Dietetic Association, 102(11), 1648-1651. https://doi.org/10.1016/S0002-8223(02)90351-2

Cirillo, F., Lazzeroni, P., Sartori, C., & Street, M. E. (2017). Inflammatory diseases and growth: effects on the GH-IGF axis and on growth plate. International Journal of Molecular Sciences, 18(9), 1878. https://doi.org/10.3390/ijms18091878

Damsgaard, R., Bencke, J., Matthiesen, G., Petersen, J. H., & Müller, J. (2000). Is prepubertal growth adversely affected by sport? Medicine and Science in Sports and Exercise, 32(10), 1698-1703. https://doi.org/10.1097/00005768-200010000-00006

Darling, E. M., & Athanasiou, K. A. (2003). Biomechanical strategies for articular cartilage regeneration. Annals of Biomedical Engineering, 31(9), 1114–1124. https://doi.org/10.1114/1.1603752

Desvigne, N., Barthelemy, J. C., Frere, D., Gay-Montchamp, J. P., & Costes, F. (2005). Microdialysis of insulin-like growth factor-I in human muscle. European Journal of Applied Physiology, 94(1), 216–219. https://doi.org/10.1007/s00421-004-1292-1

Domene, H. M., Martinez, A. S., Frystyk, J., Bengolea, S. V., Ropelato, M. G., Scaglia, P. A., ... Jasper H. G. (2007). Normal growth spurt and final height despite low levels of all forms of circulating insulin-like growth factor I in a patient with acid-labile subunit deficiency. Hormone Research, 67(5), 243–249. https://doi.org/10.1159/000098479

Eckhardt, C. L., Gernand, A. D., Roth, D. E., & Bodnar, L. M. (2014). Maternal vitamin D status and infant anthropometry in a US multi-centre cohort study. Annals of Human Biology, 42(3), 217–224. https://doi.org/10.3109/03014460.2014.954616

Fagerberg, P. (2018). Negative consequences of low energy availability in natural male bodybuilding: a review. International Journal of Sport Nutrition and Exercise Metabolism, 28(4), 385-402. https://doi.org/10.1123/ijsnem.2016-0332

Farr, J. N., Laddu, D. R., Blew, R. M., Lee, V. R., & Going, S. B. (2013). Effects of physical activity and muscle quality on bone development in girls. Medicine and Science in Sports and Exercise, 45(12), 2332-2340. https://doi.org/10.1249/MSS.0b013e31829c32fe

Forcinito, P., Andrade, A. C., Finkielstain, G. P., Baron, J., Nilsson, O., & Lui, J. C. (2011). Growth-inhibiting conditions slow growth plate senescence. Journal of Endocrinology, 208(1), 59–67. https://doi.org/10.1677/JOE-10-0302

Fraser, B. J., Schmidt, M. D., Huynh, Q. L., Dwyer, T., Venn, A. J., & Magnussen, C. G. (2017). Tracking of muscular strength and power from youth to young adulthood: longitudinal findings from the Childhood Determinants of Adult Health Study. Journal of Science and Medicine in Sport, 20(10), 927-931. https://doi.org/10.1016/j.jsams.2017.03.021

Frystyk, J. (2010). Exercise and the growth hormone-insulin-like growth factor axis. Medicine and Science in Sports and Exercise, 42(1), 58-66. https://doi.org/10.1249/MSS.0b013e3181b07d2d.

Fuchs, R. K., Bauer, J. J., & Snow, C. M. (2001). Jumping improves hip and lumbar spine bone mass in prepubescent children: a randomized controlled trial. Journal of Bone and Mineral Research, 16(1), 148-156. https://doi.org/10.1359/jbmr.2001.16.1.148

Gat-Yablonski, G., & Phillip, M. (2015). Nutritionally induced catch-up growth. Nutrients, 7(1), 517–551. https://doi.org/10.3390/nu7010517

Georgopoulos, N. A., Markou, K. B., Theodoropoulou, A., Vagenakis, G. A., Mylonas, P., & Vagenakis, A. G. (2004). Growth, pubertal development, skeletal maturation and bone mass acquisition in athletes. Hormones, 3(4), 233-243. Retrieved from http://www.hormones.gr/pdf/1116416978.pdf

Gregg, V. H., & Ferguson, J. E. (2017). Exercise in pregnancy. Clinics in sports medicine, 36(4), 741-752. https://doi.org/10.1016/j.csm.2017.05.005

Iuliano-Burns, S., Mirwald, R. L., & Bailey, D. A. (2001). Timing and magnitude of peak height velocity and peak tissue velocities for early, average, and late maturing boys and girls. American Journal of Human Biology, 13(1), 1–8. https://doi.org/10.1002/1520-6300(200101/02)13:1<1::AID-AJHB1000>3.0.CO;2-S

Jee, Y. H., & Baron, J. (2016). The biology of stature. Journal of Pediatrics, 173, 32–38. https://doi.org/10.1016/j.jpeds.2016.02.068

Jorde, R., Svartberg, J., Joakimsen, R. M., & Grimnes, G. (2012). Associations between polymorphisms related to calcium metabolism and human height: The Tromsø Study. Annals of Human Genetics, 76(3), 200–210. https://doi.org/10.1111/j.1469-1809.2012.00703.x

Joy, E., Souza, M. J., Nattiv, A., Misra, M., Williams, N. I., Mallinson, R. J., … Sundgot, J. (2014). Female athlete triad coalition consensus statement on treatment and return to play of the female athlete triad. Current Sports Medicine Reports, 13(4), 219–232. https://doi.org/10.1249/JSR.0000000000000077

Kotnik, P., Fischer Posovszky, P., & Wabitsch, M. (2015). Endocrine and metabolic effects of adipose tissue in children and adolescents. Slovenian Journal of Public Health, 54(2), 131–138. https://doi.org/10.1515/sjph-2015-0020

Kremer, R., Campbell, P. P., Reinhardt, T., & Gilsanz, V. (2009). Vitamin D status and its relationship to body fat, final height, and peak bone mass in young women. Journal of Clinical Endocrinology and Metabolism, 94(1), 67–73. https://doi.org/10.1210/jc.2008-1575

Laor, T., Wall, E. J., & Vu, L. P. (2006). Physeal widening in the knee due to stress injury in child athletes. American Journal of Roentgenology, 186(5), 1260-1264. https://doi.org/10.2214/AJR.04.1606

LeRoith, D., Bondy, C., Yakar, S., Liu, J. L., & Butler, A. (2001). The somatomedin hypothesis: 2001. Endocrine Reviews, 22(1), 53–74. https://doi.org/10.1210/edrv.22.1.0419

Lui, J. C., Garrison, P., & Baron, J. (2015). Regulation of body growth. Current Opinion in Pediatrics, 27(4), 502–510. https://doi.org/10.1097/MOP.0000000000000235

Malina, R. M. (2006). Weight training in youth-growth, maturation, and safety: an evidence-based review. Clinical Journal of Sport Medicine, 16(6), 478-487. https://doi.org/10.1097/01.jsm.0000248843.31874

Malina, R. M., Baxter-Jones, A. D., Armstrong, N., Beunen, G. P., Caine, D., Daly, R. M., ... & Russell, K. (2013). Role of intensive training in the growth and maturation of artistic gymnasts. Sports Medicine, 43(9), 783-802. https://doi.org/10.1007/s40279-013-0058-5

Maqsood, A. R., Trueman, J. A., Whatmore, A. J., Westwood, M., Price, D. A., Hall, C. M., & Clayton, P. E. (2007). The relationship between nocturnal urinary leptin and gonadotrophins as children progress towards puberty. Hormone Research in Paediatrics, 68(5), 225–230. https://doi.org/10.1159/000101335

Mirtz, T. A., Chandler, J. P., & Eyers, C. M. (2011). The effects of physical activity on the epiphyseal growth plates: a review of the literature on normal physiology and clinical implications. Journal of Clinical Medicine Research, 3(1), 1–7. https://doi.org/10.4021/jocmr477w

Modan-Moses, D., Yaroslavsky, A., Kochavi, B., Toledano, A., Segev, S., Balawi, F., ... Stein, D. (2012). Linear growth and final height characteristics in adolescent females with anorexia nervosa. PloS one, 7(9). https://doi.org/10.1371/journal.pone.0045504

Modan-Moses, D., Yaroslavsky, A., Novikov, I., Segev, S., Toledano, A., Miterany, E., & Stein, D. (2003). Stunting of growth as a major feature of anorexia nervosa in male adolescents. Pediatrics, 111(2), 270-276. https://doi.org/10.1542/peds.111.2.270

Mountjoy, M., Sundgot-Borgen, J., Burke, L., Ackerman, K. E., Blauwet, C., Constantini, N., … Budgett, R. (2018). IOC consensus statement on relative energy deficiency in sport (RED-S): 2018 update. British Journal of Sports Medicine, 52(11), 687–697. https://doi.org/10.1136/bjsports-2018-099193

Nilsson, O., & Baron, J. (2004). Fundamental limits on longitudinal bone growth: growth plate senescence and epiphyseal fusion. Trends in Endocrinology and Metabolism, 15(8), 370–374. https://doi.org/10.1016/j.tem.2004.08.004

Nilsson, O., Marino, R., De Luca, F., Phillip, M., & Baron, J. (2005). Endocrine Regulation of the Growth Plate. Hormone Research in Paediatrics, 64(4), 157–165. https://doi.org/10.1159/000088791

Nilsson, M., Sundh, D., Ohlsson, C., Karlsson, M., Mellstrom, D., & Lorentzon, M. (2014). Exercise during growth and young adulthood is independently associated with cortical bone size and strength in old Swedish men. Journal of Bone and Mineral Research, 29(8), 1795-1804. https://doi.org/10.1002/jbmr.2212

Oftedal, S., Davies, P. S. W., Boyd, R. N., Stevenson, R. D., Ware, R. S., Keawutan, P., … Bell, K. L. (2016). Longitudinal growth, diet, and physical activity in young children with cerebral palsy. Pediatrics, 138(4). https://doi.org/10.1542/peds.2016-1321

Poitras, V. J., Gray, C. E., Borghese, M. M., Carson, V., Chaput, J. P., Janssen, I., ... Sampson, M. (2016). Systematic review of the relationships between objectively measured physical activity and health indicators in school-aged children and youth. Applied Physiology, Nutrition, and Metabolism, 41(6), 197-239. https://doi.org/10.1139/apnm-2015-0663

Riddell, M. C. (2008). The endocrine response and substrate utilization during exercise in children and adolescents. Journal of Applied Physiology, 105(2), 725–733. https://doi.org/10.1152/japplphysiol.00031.2008

Schulzke, S. M., Kaempfen, S., Trachsel, D., & Patole, S. K. (2014). Physical activity programs for promoting bone mineralization and growth in preterm infants. Cochrane Database of Systematic Reviews, (4). https://doi.org/10.1002/14651858.CD005387.pub3

Tenforde, A. S., Barrack, M. T., Nattiv, A., & Fredericson, M. (2016). Parallels with the Female Athlete Triad in Male Athletes. Sport Medicine, 46(2), 171–182. https://doi.org/10.1007/s40279-015-0411-y

Torun, B., & Viteri, F. E. (1994). Influence of exercise on linear growth. European Journal of Clinical Nutrition, 48(1), 186-189. Retrieved from http://archive.unu.edu/unupress/food2/UID06E/UID06E18.HTM

Tremblay, M. S., LeBlanc, A. G., Kho, M. E., Saunders, T. J., Larouche, R., Colley, R. C., … Gorber, S. C. (2011). Systematic review of sedentary behaviour and health indicators in school-aged children and youth. International Journal of Behavioral Nutrition and Physical Activity, 8(1), 98. https://doi.org/10.1186/1479-5868-8-98

Twisk, J. W. (2001). Physical activity guidelines for children and adolescents: a critical review. Sports Medicine, 31(8), 617-627. https://doi.org/10.2165/00007256-200131080-00006

Viljakainen, H. T., Saarnio, E., Hytinantti, T., Miettinen, M., Surcel, H., Makitie, O., … Lamberg-Allardt, C. (2010). Maternal vitamin D status determines bone variables in the newborn. Journal of Clinical Endocrinology & Metabolism, 95(4), 1749-1757. https://doi.org/10.1210/jc.2009-1391

Wang, Y., Cheng, Z., Elalieh, H. Z., Nakamura, E., Nguyen, M. T., … Chang, W. (2011). IGF-1R signaling in chondrocytes modulates growth plate development by interacting with the PTHrP/Ihh pathway. Journal of Bone and Mineral Research, 26(7), 1437-1446. https://doi.org/10.1002/jbmr.359

Weise, M., De-Levi, S., Barnes, K. M., Gafni, R. I., Abad, V., & Baron, J. (2001). Effects of estrogen on growth plate senescence and epiphyseal fusion. Proceedings of the National Academy of Sciences, 98(12), 6871-6876. https://doi.org/10.1073/pnas.121180498

Welten, D. C., Kemper, H. C. G., Post, G. B., Van Mechelen, W., Twisk, J., Lips, P., & Teule, G. J. (1994). Weight-bearing activity during youth is a more important factor for peak bone mass than calcium intake. Journal of Bone and Mineral Research, 9(7), 1089-1096. https://doi.org/10.1002/jbmr.5650090717

Wennberg, P., Gustafsson, P. E., Howard, B., Wennberg, M., & Hammarström, A. (2014). Television viewing over the life course and the metabolic syndrome in mid-adulthood: a longitudinal population-based study. Journal of Epidemiology & Community Health, 68(10), 928–933. http://doi.org/10.1136/jech-2013-203504

World Health Organization. (2010). Global recommendations on physical activity for health. World Health Organization. Retrieved from https://www.who.int/dietphysicalactivity/publications/9789241599979/en/

Wiebe, H. W., Boulé, N. G., Chari, R., & Davenport, M. H. (2015). The effect of supervised prenatal exercise on fetal growth: a meta-analysis. Obstetrics and Gynecology, 125(5), 1185-1194. https://doi.org/10.1097/AOG.0000000000000801

Published
2020-05-25
How to Cite
Jazbinšek, S., & Kotnik, P. (2020). Influence of physical activity on linear growth in children and adolescents. Annales Kinesiologiae, 11(1), 29-42. https://doi.org/10.35469/ak.2020.222