BENEFITS OF MOTOR AND/OR COGNITIVE EXERCISE: A REVIEW WITH RECOMMENDATIONS FOR THE THIRD AGE
Abstract
Physical activity in the form of aerobic and resistance exercise, leading to a high level of cardio-respiratory fitness represents a strong non-pharmacological preventive tool against cognitive decline and thus the occurrence of neuro-degenerative diseases in the third age. However, the effects are even greater if such exercise is performed on regular basis in the form of simultaneous combination of a motor and additional cognitive task, dancing or interactive video dancing or as a body-mind meditative exercise like Tai Ji Quan.
The aim of this article is a review of benefits of motor/cognitive exercise with recommendations for older adults. In the first part, the benefits and effects of physical activity and exercise on cognitive functions are reviewed. Physical activity and exercise have an important role in mitigating age-related structural and behavioral changes within the brain, increases BDNF levels in the hippocampus, enhances learning and neurogenesis in the hippocampal regions and optimizes spatial abilities. The second part is expanded onto the benefits and effects of combined motor and/or cognitive exercise on cognitive functions with recommendations. This combination of motor and/or cognitive exercise could be achieved so that both activities are performed separately, one after another, named “motor and cognitive exercise”, or simultaneously, named “motor-cognitive exercise”. Based on this premise, we divided the second part into three sub-topics: i) the effects of physical exercise/training followed by computerized and other forms of cognitive training, ii) the effects of simultaneously performed motor and cognitive exercise/training and iii) the effects of dancing, interactive video dancing and ancient body-mind meditative techniques. Studies suggest that a combination of mental and physical training may result in greater cognitive gains, namely in larger improvements in the executive control task and in the paired-associates task.References
Amaral, D., Scharfman, H. & Lavenex, P. (2007). The dentate gyrus: fundamental neuroanatomical organization (dentate gyrus for dummies). Progress in Brain Research, 163, 3–22. doi: 10.1016/S0079-6123(07)63001-5.
Bherer, L., Erickson, K. I. & Liu-Ambrose, T. (2013). A review of the effects of physical activity and exercise on cognitive and brain functions in older adults. Journal of Aging Research, Article ID 657508. doi: 10.1155/2013/657508.
Bishop, N. A., Lu, T., & Yankner, B. A. (2010). Neural mechanisms of ageing and cognitive decline. Nature, 464(7288), 529–535. doi: 10.1038/nature08983.
Cameron, H. A. & McKay, R. D. (2001). Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. The Journal of Comparative Neurology, 435(4), 406–417. doi: 10.1002/cne.1040.
Carro, E., Nuñez, A., Busiguina, S., & Torres-Aleman, I. (2000). Circulating insulin-like growth factor I mediates effects of exercise on the brain. The Journal of Neuroscience, 20(8), 2926–2933.
Chodzko-Zajko, W. J., Proctor D. N., Fiatarone Singh, M. A., Minson, C. T., Nigg, C. R., Salem, G. J., et al. (2009). Exercise and physical activity for older adults. Medicine & Science in Sports & Exercise, 41(7), 1510–1530. doi: 10.1249/MSS.0b013e3181a0c95c
Colcombe, S. J., Erickson, K. I., Scalf, P. E., Kim, J. S., Prakash, R., McAuley, E., et al. (2006). Aerobic exercise training increases brain volume in aging humans. The Journal of Gerontology Series A: Biological Sciences & Medicine Sciences, 61(11), 1166–1170. doi: 10.1093/gerona/61.11.1166
Cotman, C. W., & Berchtold, N. C. (2002). Exercise: a behavioral intervention to enhance brain health and plasticity. Trends in Neuroscience, 25(6), 295–301. doi: 10.1016/S0166-2236(02)02143-4
Cotman, C. W., Berchtold, N. C., & Christie, L. A. (2007). Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends in Neurosciences, 30(9), 464–472. doi: 10.1016/j.tins.2007.06.011
Creer, D. J., Romberg, C., Saksida, L. M., van Praag, H., & Bussey, T. J. (2010). Running enhances spatial pattern separation in mice. Proceedings of the National Academy of Sciences of the United States of America, 107(5), 2367–2372. doi: 10.1073/pnas.0911725107
Curlik 2nd, D. M., & Shors, T. J. (2011). Learning increases the survival of newborn neurons provided that learning is difficult to achieve and successful. Journal of Cognitive Neuroscience 23(9), 2159–2170. doi: 10.1162/jocn.2010.21597
Curlik 2nd, D. M. & Shors, T. J. (2013). Training your brain: Do mental and physical (MAP) training enhance cognition through the process of neurogenesis in the hippocampus? Neuropharmacology, 64, 506–514. doi: 10.1016/j.neuropharm.2012.07.027
Dinse, H. R. (2006). Cortical reorganization in the aging brain. Progress in Brain Research, 157, 57–80, 386-387. doi: 10.1016/S0079-6123(06)57005-0
de Dreu, M. J., Kwakkel, G., & van Wegen, E. E. (2015). Partnered dancing to improve mobility for people with Parkinson's disease. Frontiers in neuroscience, 9, 444. doi: 10.3389/fnins.2015.00444
Eaves, D. L., Riach, M., Holmes, P. S., & Wright, D. J. (2016). Motor imagery during action observation: a brief review of evidence, theory and future research opportunities. Frontiers in neuroscience, 10, 514. doi: 10.3389/fnins.2016.00514
Erickson, K. I., Gildengers, A. G., & Butters, M. A. (2013). Physical activity and brain plasticity in late adulthood. Dialogues in Clinical Neurosciences, 15(1), 99–108.
Erickson, K. I., Oberlin, L., Gujral, S., Leckie, R. L., Weinstein, M. W., Hodzic, J. C., et al. (2014). Exercise as a way of capitalizing on neuroplasticity in late adulthood. Topics in Geriatric Rehabilitation, 30(1), 8–14. doi: 10.1097/TGR.0000000000000008
Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L., et al. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences of the United States of America, 108(7), 3017–3022. doi: 10.1073/pnas.1015950108
Fratiglioni, L., Paillard-Borg, S., & Winblad, B. (2004). An active and socially integrated lifestyle in late life might protect against dementia. The Lancet Neurology, 3(6), 343–353. doi: 10.1016/S1474-4422(04)00767-7
Gerževič, M., & Dobnik, M. (2014). Gibalno-kognitivna vadba: praktična delavnica [Motor-cognitive exercise: practical workshop]. eSinapsa 2014(7). Retrived on August 11th 2015, from: http://www.sinapsa.org/eSinapsa/stevilke/2014-7/107/Gibalno-kognitivna%20vadba:%20prakti%C4%8Dna%20delavnica.
Gerževič, M., Dobnik, M., & Pišot, R. (2014). Telesna aktivnost in prehrana za kakovostno staranje: Priročnik o telesni aktivnosti in vadbi v tretjem življenjskem obdobju [Physical activity and nutrition for quality aging: Handbook on physical activity and exercise in the third age]. Koper: Univerzitetna založba Annales, 2014.
Gradari, S., Pallé, A., McGreevy, K. R., Fontán-Lozano, Á., & Trejo, J. L. (2016). Can exercise make you smarter, happier, and have more neurons? A hormetic perspective. Frontiers in neuroscience, 10, 93. doi: 10.3389/fnins.2016.00093
Goswami, N., Kavcic, V., Marusic, U., Simunic, B., Rössler, A., Hinghofer-Szalkay, H. et al. (2015). Effect of computerized cognitive training with virtual spatial navigation task during bed rest immobilization and recovery on vascular function: a pilot study. Clinical Interventions in Aging, 10, 453–459. doi: 10.2147/CIA.S76028
Gregory, S. M., Parker. B., & Thompson, P. D. (2012). Physical activity, cognitive function, and brain health: what is the role of exercise training in the prevention of dementia? Brain Sciences, 2(4), 684–708. doi:10.3390/brainsci2040684
Guo, F. (2015). Effects of long-term Tai Ji Quan exercise on automatic nervous modulation in the elderly. Zhongguo Ying Yong Sheng Li Xue Za Zhi, 31(2), 158–163.
Hamacher, D., Hamacher, D., Rehfeld, K., Hökelmann, A., & Schega, L. (2015). The effect of a six months dancing program on motor-cognitive dual task performance in older adults. Journal of Aging and Physical Activity, 23(4), 647–652. doi: 10.1123/japa.2014-0067
Hillman, C. H., Erickson, K. I., & Kramer, A. F. (2008). Be smart, exercise your heart: exercise effects on brain and cognition. Nature Reviews Neuroscience, 9(1), 58–65. doi: 10.1038/nrn2298
Hökelmann, A., Rehfeld, K., Dordevič, M., Gujar, T. A., Henrichs, K., & Partie, M. (2015). Motor and cognitive intervention after (hip) surgery – novel approaches in rehabilitation strategies. In U. Marušič, B. Šimunič, R. Pišot (Eds.), Hip fracture in the elderly – reasons, consequences and rehabilitation (pp. 77–112). Koper: Univerzitetna založba Annales.
Jovancevic, J., Rosano, C., Perera, S., Erickson, K. I. & Studenski, S. (2012). A protocol for a randomized clinical trial of interactive video dance: potential for effects on cognitive function. BMC Geriatrics, 12(23), 1–9. doi: 10.1186/1471-2318-12-23
Kattenstroth, J. C., Kalisch, T., Holt, S., Tegenthoff, M., & Dinse, H. R. (2013). Six months of dance intervention enhances postural, sensorimotor, and cognitive performance in elderly without affecting cardio-respiratory functions. Frontiers in Aging Neuroscience, 5(5), 1–16. doi: 10.3389/fnagi.2013.00005
Kempermann, G., Fabel, K., Ehninger, D., Babu, H., Leal-Galicia, P., Garthe, A., & Wolf, S. A. (2010). Why and how physical activity promotes experience-induced brain plasticity. Frontiers in neuroscience, 4, 189. doi: 10.3389/fnins.2010.00189
Kramer, A. F., Hahn, S., Cohen, N. J., Banich, M. T., McAuley, E., Harrison, C. R., et al. (1999). Ageing, fitness and neurocognitive function. Nature, 400(6743), 418–419. doi: 10.1038/22682
Kramer, A. F., & Erickson, K. I. (2007). Capitalizing on cortical plasticity: influence of physical activity on cognition and brain function. Trends in Cognitive Sciences, 11(8), 342–348. doi: 10.1016/j.tics.2007.06.009
Laurin, D., Verreault, R., Lindsay, J., MacPherson, K., & Rockwood, K. (2001). PHysical activity and risk of cognitive impairment and dementia in elderly persons. Archives of Neurology, 58(3), 498–504. doi: 10.1001/archneur.58.3.498
Lautenschlager, N. T., Cox, K. L., Flicker, L., Foste, J. K., van Bockxmeer, F. M., Xiao, J., et al. (2008). Effect of physical activity on cognitive function in older adults at risk for alzheimer disease: A randomized trial. JAMA, 300(9), 1027–1037. doi: 10.1001/jama.300.9.1027
Li, F., & Harmer, P. (2015). Economic evaluation of a Tai Ji Quan intervention to reduce falls in people with parkinson disease, Oregon, 2008-2011. Preventing Chronic Disease, 12: E120. doi: 10.5888/pcd12.140413
Marusic, U., Giordani, B., Moffat, S. D., Petrič, M., Dolenc, P., Pišot, R., et al. (2018). Computerized cognitive training during physical inactivity improves executive functioning in older adults. Aging, Neuropsychology, and Cognition, 25(1), 49-69. doi: 10.1080/13825585.2016.1263724
Marusic, U., Kavcic, V., Giordani, B., Gerževič, M., Meeusen, R., & Pišot, R. (2015). Computerized spatial navigation training during 14 days of bed rest in healthy older adult men: Effect on gait performance. Psychology and aging, 30(2), 334-340. doi: 10.1037/pag0000021
Masley, S., Roetzheim, R., & Gualtieri, T. (2009). Aerobic exercise enhances cognitive flexibility. Journal of Clinical Psychology in Medical Settings, 16(2), 186–193. doi: 10.1007/s10880-009-9159-6
Masud, T. & Morris, O. R. (2001). Epidemiology of falls. Age and Ageing, 30(Suppl4), 3–7.
Netz, Y., Wu, M.-J., Becker, B. J., & Tenenbaum, G. (2005). Physical activity and psychological well-being in advanced age: a meta-analysis of intervention studies. Psychology and Aging, 20(2), 272–284. doi: 10.1037/0882-7974.20.2.272
Olsson, C. J. (2012). Dancing combines the essence for successful aging. Frontiers in neuroscience, 6, 155. doi: 10.3389/fnins.2012.00155
Oswald, W. D., Gunzelmann, T., Ruprecht, R., & Hagen, B. (2006). Differential effects of single versus combined cognitive and physical training with older adults: the SimA study in a 5-year perspective. European Journal of Ageing, 3, 179–192. doi: 10.1007/s10433-006-0035-z
Pajonk, F. G., Wobrock, T., Gruber, O., Scherk, H., Berner, D., Kaizl, I., et al. (2010). Hippocampal plasticity in response to exercise in schizophrenia. Archives of General Psychiatry, 67(2), 133–143. doi: 10.1001/archgenpsychiatry.2009.193
Passaro, A., Soavi, C., Marusic, U., Rejc, E., Sanz, J. M., Morieri, M. L., et al. (2017). Computerized cognitive training and brain derived neurotrophic factor during bed rest: mechanisms to protect individual during acute stress. Aging (Albany NY), 9(2), 393–407. doi: 10.18632/aging.101166
Penedo, F. J., & Dahn, J. R. (2005). Exercise and well-being: a review of mental and physical health benefits associated with physical activity. Current Opinion in Psychiatry, 18(2), 189–193.
Pichierri, G., Murer, K., & de Bruin, E. D. (2012). A cognitive-motor intervention using a dance video game to enhance foot placement accuracy and gait under dual task conditions in older adults: a randomized controlled trial. BMC Geriatrics, 12(74), 1–14. doi: 10.1186/1471-2318-12-74
Pišot, R., Marusic, U., Biolo, G., Mazzucco, S., Lazzer, S., Grassi, B., et al. (2016). Greater loss in muscle mass and function but smaller metabolic alterations in older compared with younger men following 2 wk of bed rest and recovery. Journal of Applied Physiology, 120(8), 922-929. doi: 10.1152/japplphysiol.00858.2015
Qiu, M. P., & Zhu, W. (2003). Tai Chi illustrated. Champaign: Human Kinetics.
Rejeski, W. J., & Mihalko, S. L. (2001). Physical activity and quality of life in older adults. The Journals of Gerontology Series A: Biological Sciences & Medical Sciences, 56(suppl 2), 23–35. doi: 10.1093/gerona/56.suppl_2.23
Richardson, J. K. & Ashton-Miller, J. A. (1996). Peripheral neuropathy: an often-overlooked cause of falls in the elderly. Postgraduate Medicine, 99(6), 161–172. doi: 10.1080/00325481.1996.11946142
Rubenstein, L. Z. (2006). Falls in older people: epidemiology, risk factors and strategies for prevention. Age and Ageing, 35(Suppl2), ii37–ii41. doi: 10.1093/ageing/afl084
Saab, B. J., Georgiou, J., Nath, A., Lee, F. J., Wang, M., Michalon, A., et al. (2009). NCS-1 in the dentate gyrus promotes exploration, synaptic plasticity, and rapid acquisition of spatial memory. Neuron, 63(5), 643–656. doi: 10.1016/j.neuron.2009.08.014
Sattin, R. W. (1992). Falls among older persons: A public health perspective. Annual Review of Public Health, 13, 489–508. doi: 10.1146/annurev.pu.13.050192.002421
Scharfman, H. (2007). The Dentate Gyrus: A comprehensive guide to structure, function, and clinical implications. Amsterdam: Elsevier.
Shatil, E. (2013). Does combined cognitive training and physical activity training enhance cognitive abilities more than either alone? A four-condition randomized controlled trial among older adults. Frontiers in Aging Neuroscience, 5(8), 1–12. doi: 10.3389/fnagi.2013.00008.
Smith, P. J., Blumenthal, J. A., Hoffman, B. M., Cooper, H., Strauman, T. A., Welsh-Bohmer, K., et al. (2010). Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosomatic Medicine, 72(3), 239–252. doi: 10.1097/PSY.0b013e3181d14633.
Stroth, S., Hille, K., Spitzer, M., & Reinhardt, R. (2009). Aerobic endurance exercise benefits memory and affect in young adults. Neuropsychological Rehabilitation, 19(2), 223–243. doi: 10.1080/09602010802091183.
Sun, J., & Buys, N. (2015). Community-based mind-body meditative Tai Chi program and its effects on improvement of blood pressure, weight, renal function, serum lipoprotein, and quality of life in chinese adults with hypertension. American Journal of Cardiology, 116(7), 1076-1081. doi: 10.1016/j.amjcard.2015.07.012.
Sun, J., Kanagawa, K., Sasaki, J., Ooki, S., Xu, H., & Wang, L. (2015). Tai chi improves cognitive and physical function in the elderly: a randomized controlled trial. Journal of Physical Therapy Science, 27(5), 1467–1471. Doi: 10.1589/jpts.27.1467
Theill, N., Schumacher, V., Adelsberger, R., Martin, M., & Jäncke, L. (2013). Effects of simultaneously performed cognitive and physical training in older adults. BMC Neuroscience, 14(103), 1–14. doi: 10.1186/1471-2202-14-103
Van Praag, H., Shubert, T., Zhao, C., & Gage, F. H. (2005). Exercise enhances learning and hippocampal neurogenesis in aged mice. The Journal of Neuroscience, 25(38), 8680–8685. doi: 10.1523/JNEUROSCI.1731-05.2005
Weuve, J., Kang, J. H., Manson, J. E., Breteler, M. M., Ware, J. H., & Grodstein, F. (2004). Physical activity, including walking, and cognitive function in older women. JAMA, 292(12), 1454–1461. doi: 10.1001/jama.292.12.1454
Yuede, C. M., Zimmerman, S. D., Dong, H., Kling, M. J., Bero, A. W., Holtzman, D. M., et al. (2009). Effects of voluntary and forced exercise on plaque deposition, hippocampal volume, and behavior in the Tg2576 mouse model of Alzheimer's disease. Neurobiology of Disease, 35(3), 426–432. doi: 10.1016/j.nbd.2009.06.002
Zhou, J., Chang, S., Cong, Y., Qin, M., Sun, W., Lian, J., et al. (2015). Effects of 24 weeks of Tai Chi exercise on postural control among elderly women. Research in Sports Medicine, 23(3): 302–314. doi: 10.1080/15438627.2015.1040918
Downloads
Published
How to Cite
Issue
Section
License
Open Access Policy and Copyright
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under the terms of the Creative Commons Attribution license (CC BY) that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.
- Authors grant the publisher commercial rights to produce hardcopy volumes of the journal for sale to libraries and individuals.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.